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A. ML enhanced SC

Problem definition

Build SC model
> Simulations
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Optimization Uncertainty quantification

Inverse problem Failure probability




A. The Challenges

Surrogate model for spatial-temporal problems

2

Simulations

e m—————

_ o Steady-state Mechanical Chemical
Sequential velocity fields temperature structure Reaction
field
Challenge:
- Ultra-high dimensionality (100x100x100)
- Coupled fields
- Boundary conditions
- Limited date

- Predictive confidence




A.1. Future Research

1. Generalization of Conservational Kernels:
Utilizing the known conservational law in PDEs to improve a GP surrogate
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Figure 1. Learning a vector field decomposition: samples, learned field, divergence- and curl-free parts.

2. Curse of dimensionality --> blessing of dimensionality:
Learning kernels from rich data




A.1. Future Research

3. Scalable inference with Known B.C.
Scalable inference using tensor product + inducing points

4. Uncertainty quantification for random spatial field inputs
Joint learning with encoder-decoder network and GP

Known B.C.

surrogate
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A.2. Multi-Fidelity Motivation

Problem definition

Build SC model
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A.2. Multi-Fidelity Motivation

Circuit design optimization as an example:
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A.2. Multi-Fidelity Motivation

Low-fidelity Simulation
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A.2. Multi-Fidelity Motivation
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A.2. Multi-Fidelity: Future Work

1. Multi-Fidelity Fusion with Arbitrary Data f'
1. No more subset requirement. "
2. No more aligned high-dimensional output requirement. a

3. Unlimited number of fidelities
X4
Xl:"

2. Automatic efficient surrogate
Active learning based on entropy reduction + parallelization

3. Meta-learning in multi-fidelity
1. Learning the kernel function throughout multi-fidelity data
2. Bayesian neural network (with scalable tensor variational posterior) with weight sharing
3. Learning the manifold of correlation using CNF or NeuralODE




B.2. Future Research

6. Multi-Fidelity fusion for electronic structure calculation

Feature engineering Multi-fidelity fusion
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A.3. Bayesian Optimization: Motivation
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A.3. Future Research

1. Multi-Fidelity Bayesian optimization
* Infinite fidelity
* (Cost-aware
e Parallel

2. BO with uncertainty, e.g., yield optimization
e  Bayesian quadrature Yield analysis: ~ g(+) = jl(fk( ,1))p(v)d
 Feature selection ’
* Transfer learning
e  Better acquisition function and parallelization

Yield Optimization: " = argmaxgex3;g(+)

Where  SPICE simulation z;, = f,(, V)
1z, < z
0 Zi > Ay

Indication function I(x,v) = {

3. Mix-variable (Ordinal + categorical + continuous variables) Bayesian optimization
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PINN: Physics-informed neural networks

Classic NN: L(0) := L,(0)
N i
Data b

_________________________

L(0) == Lu(0) + \E_:@ + Ly (0) + Lo, (0)

Data fit PDE residual ICs fit BCs fit

PINN:

.........................
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u(x,t) = g(x,t), t€

[1] Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problem:s
differential equations. Journal of Computational Physics, 378, 686-707.

[2] Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary and partial differential equations.

[3] Psichogios, D. C., & Ungar, L. H. (1992). A hybrid neural network-first principles approach to process modeling.




B.1. Physics Enhanced Machine Learning

1. Physics informed Bayesian model

Finished work:
Physics-informed deep kernel learning (AISTAT2021)
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Generative model
Conditional model




2. ML-Injected Simulations
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Velocity field is altered the PDE system + external forced

Cloud forecasting

ML + Physics Pred-RNN

B.2. ML-Injected Simulations
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*B.3. Denoising Diffusion Probabilistic Models

OPEN Al’s DALL-E 2

Inputs:

An astronaut
riding a horse

as a pencil drawing

—— Stochastic process —— Reverse stochastic process

Langevin dynamics Reverse Langevin dynamics

_ /

N

A better SDE and faster solver?

https://yang-song.github.io/blog/2021/score/
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C.1. Bayesian Digital Twins Automata

A Bayesian model for:

o Real-time filed report and forecast

o Real-time UQ

Sruface Sensors

~a

o Abnormal detection

o Optimal sensor deployment

» Surface Sensors

o Automatic deployment through

active learning

Core Techniques:
o Gaussian process
o Tensor para

o Bayesian of

o Physics info

o |npainting




C.2. Electronic Design Automation

* Market size was valued at about 10 billion
dollars in 2021

 CAGR of 9.1% from 2022 to 2030.

ML becomes the next theme

My works

* Reinforcement learning adaptive stepping for
SPICE speed up (DAC2022)

* Novel Bayesian yield optimization framework
(DAC2022)

* First Al-accelerated SPICE solver of 2.3x-3.5x
speed up (TODAES under revision)

e High-dimensional yield estimation (ICCAD2022
under view)

Grant: 800k

S10 billion

2016 2017 2018 2019 2020 2021 2022

Source : IndustryARC Analysis, Expert Insights
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C.3. ML Enhanced Industry Instrument

Laser Doppler Vibrometer: A classic inverse problem
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Grant: 1 million




Recap: research map

Digital twins & Hybrid models
Multi-fidelity fusion
Spatial-temporal surrogate
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