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Research Interests

Introductions Techniques Results applications 

Scientific Computing + Machine Learning

A. ML enhanced SC

1. Data-driven Spatial-Temporal Field Modeling

2. Multi-fidelity Fusion

3. Machine Learning for Design and Optimization

B. SC enhanced ML

1. Physics Informed ML

2. ML Injected Simulation

C. SC+ML for Industry and Application

1. Digital Twins

2. EDA

3. Inverse Problem In Scientific Research
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A. ML enhanced SC

Introductions Techniques Results applications 

Problem definition

Build SC model

Simulations

Analysis

#Loop > 1000

Optimization

Inverse problem Failure probability

Uncertainty quantification 
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A. The Challenges

Introductions Techniques Results applications 

Sequential velocity fields 
Steady-state 
temperature 
field 

Mechanical 
structure

Chemical 
Reaction

Challenge:
- Ultra-high dimensionality (100x100x100)
- Coupled fields
- Boundary conditions 
- Limited date
- Predictive confidence 

Surrogate model for spatial-temporal problems

Simulations ≈
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A.1. Future Research
1. Generalization of Conservational Kernels: 
Utilizing the known conservational law in PDEs to improve a GP surrogate  

2. Curse of dimensionality --> blessing of dimensionality: 
Learning kernels from rich data 

𝑘!" 𝑥 𝑥′ = 𝜎!# exp
− 𝑥 − 𝑥$

#

2𝑙!#
⋅ 𝐼 −

𝑥 − 𝑥$

𝑙!
𝑥 − 𝑥$

𝑙!

%

Limitation:
1. Require stationary kernel
2. Scalability
3. Only for one field
4. No knowledge transfer for 

different system parameters
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Simulations surrogate

A.1. Future Research

3. Scalable inference with Known B.C.
Scalable inference using tensor product + inducing points 

Known B.C.
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4. Uncertainty quantification for random spatial field inputs
Joint learning with encoder-decoder network and GP

??
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A.2. Multi-Fidelity Motivation

Introductions Techniques Results applications 

Problem definition

Build SC model

Simulations

Analysis

Loop  #1000

Optimization

Inverse problem Failure probability

Uncertainty quantification 
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A.2. Multi-Fidelity Motivation

Introductions Techniques Results applications 

Design space Simulation Analysis

Stop?
Next 

samples
No

Yes Stop

Surrogate

Circuit design optimization as an example:
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A.2. Multi-Fidelity Motivation

Introductions Techniques Results applications 

Model parameter Analysis

Loop

Low-fidelity Simulation

Mid-fidelity Simulation

High-fidelity Simulation
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A.2. Multi-Fidelity Motivation

Introductions Techniques Results applications 

Model parameter Analysis

Loop

Low-fidelity Simulation

Mid-fidelity Simulation

High-fidelity Simulation

MF Fusion 
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A.2. Multi-Fidelity: Future Work 

1. Multi-Fidelity Fusion with Arbitrary Data
1. No more subset requirement.
2. No more aligned high-dimensional output requirement.
3. Unlimited number of fidelities

2. Automatic efficient surrogate 
Active learning based on entropy reduction + parallelization

3. Meta-learning in multi-fidelity
1. Learning the kernel function throughout multi-fidelity data
2. Bayesian neural network (with scalable tensor variational posterior) with weight sharing
3. Learning the manifold of correlation using CNF or NeuralODE
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Feature engineering Multi-fidelity fusion

B.2. Future Research

6. Multi-Fidelity fusion for electronic structure calculation
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A.3. Bayesian Optimization: Motivation

Introductions Techniques Results applications 16

Design space Simulation Analysis

Stop?
Next 

samples
No

Yes Stop

Surrogate



A.3. Future Research
1. Multi-Fidelity Bayesian optimization 

• Infinite fidelity
• Cost-aware
• Parallel 

2. BO with uncertainty, e.g., yield optimization
• Bayesian quadrature
• Feature selection
• Transfer learning
• Better acquisition function and parallelization

3. Mix-variable (Ordinal + categorical + continuous variables) Bayesian optimization

SPICE simulation 𝑧! = 𝑓!(𝒙, 𝒗)

𝑔 𝑥 ≡ $
)
𝐼 𝑓*(𝑥, 𝑣) 𝑝 𝑣 𝑑𝑣

Indication function 𝐼 𝑥, 𝑣 = .1 𝑧! ≤ 𝑧"
0 𝑧! > 𝑧"

Yield analysis: 

Yield Optimization: 𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 4∈6 𝑔(𝑥)

Where
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PINN: Physics-informed neural networks

Classic NN:

PINN:

[1] Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial 
differential equations. Journal of Computational Physics, 378, 686-707.
[2] Lagaris, I. E., Likas, A., & Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary and partial differential equations.
[3] Psichogios, D. C., & Ungar, L. H. (1992). A hybrid neural network-first principles approach to process modeling.
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B.1. Physics Enhanced Machine Learning

Introductions Techniques Results applications 

1. Physics informed Bayesian model
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Finished work:
Physics-informed deep kernel learning (AISTAT2021)



B.2. ML-Injected Simulations

𝜕𝐮
𝜕𝑡

= − 𝐮 ⋅ ∇ 𝐮 + 𝜈∇!𝐮 + 𝐟 − ∇𝒑

𝜕𝝆
𝜕𝑡 = −(𝐮 ⋅ ∇)𝝆 + 𝜅∇!𝝆 + 𝑺

∇ ⋅ 𝐮 = 𝟎

NS equation
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Velocity field is altered the PDE system +  external forced

Truth ML + Physics Pred-RNN Flow

Cloud forecasting PM2.5 forcasting

2. ML-Injected Simulations
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*B.3. Denoising Diffusion Probabilistic Models

Introductions Techniques Results applications 

OPEN AI’s DALL·E 2

Inputs:
An astronaut
riding a horse
as a pencil drawing

Perturbing data with an SDE Reversing the SDE for sample generation

Langevin dynamics Reverse Langevin dynamics

https://yang-song.github.io/blog/2021/score/

A better SDE and faster solver?
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C.1. Bayesian Digital Twins Automata

Sruface Sensors

A Bayesian model for:

ú Real-time filed report and forecast

ú Real-time UQ 

ú Abnormal detection

ú Optimal sensor deployment

ú Automatic deployment through 

active learning

Core Techniques:

ú Gaussian process

ú Tensor parameterization

ú Bayesian optimization

ú Physics informed ML

ú Inpainting

Surface Sensors 
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C.2. Electronic Design Automation

• Market size was valued at about 10 billion 
dollars in 2021

• CAGR of 9.1% from 2022 to 2030. 
• ML becomes the next theme

My works
• Reinforcement learning adaptive stepping for 

SPICE speed up (DAC2022)
• Novel Bayesian yield optimization framework

(DAC2022)
• First AI-accelerated SPICE solver of 2.3x-3.5x 

speed up (TODAES under revision)
• High-dimensional yield estimation (ICCAD2022

under view)
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Grant: 800k  

26

$10 billion



C.3. ML Enhanced Industry Instrument

R(t) is the target harmonical vibration

Grant: 1 million 
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Laser Doppler Vibrometer: A classic inverse problem 



Recap: research map

Spatial-temporal surrogate

Multi-fidelity fusion

Meta learning

Neural ODE

Physics knowledge

Active learning & BO

Optimization

Inverse problem Failure probability

Uncertainty quantification 

Digital twins & Hybrid models 

Better engineering process

Accelerate solvers … 28


